Be a crypto hero in the market by logging in

Don't you have an account? Sign in

Token price

  • BTC

    9,813,968.9KRW

    -0.4%

  • ETH

    216,490.0KRW

    -0.6%

  • XRP

    343.3KRW

    -0.1%

  • USDT

    1,189.1KRW

    0.0%

  • BCH

    266,226.5KRW

    -0.8%

  • LTC

    65,556.9KRW

    -2.4%

  • BNB

    22,235.8KRW

    3.3%

  • EOS

    3,673.8KRW

    -1.6%

  • BSV

    104,125.6KRW

    1.6%

  • XLM

    76.6KRW

    2.2%

  • TRX

    19.4KRW

    -1.1%

  • ADA

    48.5KRW

    -1.4%

  • XMR

    63,220.5KRW

    0.9%

  • HT

    4,307.5KRW

    0.5%

  • DASH

    85,633.3KRW

    1.9%

  • XTZ

    1,094.5KRW

    0.1%

  • ETC

    5,505.8KRW

    -3.1%

  • NEO

    8,839.9KRW

    1.1%

  • MKR

    592,394.2KRW

    -0.9%

  • USDC

    1,188.4KRW

    0.1%

  • XEM

    45.7KRW

    -0.9%

  • ONT

    764.3KRW

    1.6%

  • BAT

    271.5KRW

    11.2%

  • DOGE

    3.0KRW

    0.3%

  • ZEC

    44,166.4KRW

    0.9%

  • PAX

    1,188.0KRW

    0.0%

  • INB

    760.5KRW

    -6.4%

  • ZRX

    389.0KRW

    3.7%

  • VET

    4.2KRW

    -1.2%

  • TUSD

    1,188.4KRW

    0.2%

  • QTUM

    2,122.7KRW

    -0.3%

  • DCR

    18,739.3KRW

    -1.2%

  • RVN

    42.4KRW

    0.4%

  • BTG

    9,829.3KRW

    5.7%

  • LINK

    485.1KRW

    2.0%

  • NANO

    1,017.0KRW

    9.2%

  • OMG

    962.2KRW

    -1.5%

  • DGB

    9.9KRW

    -3.3%

  • KCS

    1,328.3KRW

    -0.3%

  • LSK

    952.5KRW

    -0.6%

  • BCD

    594.6KRW

    2.8%

  • REP

    10,007.5KRW

    3.4%

  • SC

    2.6KRW

    -7.1%

  • WAVES

    1,044.6KRW

    2.4%

  • ICX

    206.1KRW

    0.3%

  • DAI

    1,189.7KRW

    -0.1%

  • XIN

    212,498.7KRW

    -1.9%

  • XIN

    212,498.7KRW

    -1.9%

  • THETA

    110.5KRW

    -2.3%

  • BCN

    0.5KRW

    -0.6%

  • MONA

    1,339.9KRW

    -1.0%

  • BTS

    31.5KRW

    -2.1%

  • KMD

    708.7KRW

    -0.9%

  • QNT

    6,631.3KRW

    -3.3%

  • HC

    1,796.8KRW

    2.7%

  • MAID

    162.0KRW

    1.8%

  • XVG

    4.5KRW

    -0.7%

  • IOST

    5.8KRW

    -0.4%

  • BTM

    68.2KRW

    0.1%

  • BTM

    68.2KRW

    0.1%

  • AE

    235.9KRW

    4.7%

  • MCO

    4,199.9KRW

    -0.5%

  • ARDR

    64.1KRW

    -1.2%

  • AOA

    9.5KRW

    1.4%

  • NEXO

    110.6KRW

    3.0%

  • GNT

    60.6KRW

    -2.1%

  • ZIL

    6.7KRW

    -0.8%

  • ENJ

    73.3KRW

    -1.3%

  • NPXS

    0.2KRW

    -0.7%

  • STEEM

    159.8KRW

    -1.8%

  • XZC

    6,261.3KRW

    -2.6%

  • SNT

    15.1KRW

    -1.2%

  • ELF

    94.9KRW

    -1.0%

  • ETN

    4.4KRW

    0.9%

  • STRAT

    439.7KRW

    0.6%

  • FCT

    4,206.4KRW

    0.2%

  • WTC

    919.9KRW

    3.2%

  • LRC

    40.2KRW

    7.8%

  • ELA

    2,258.4KRW

    -0.1%

  • RDD

    1.2KRW

    -3.9%

  • ANT

    1,060.0KRW

    3.8%

  • PPT

    590.6KRW

    -2.7%

  • PAI

    20.6KRW

    -2.3%

  • PAI

    20.6KRW

    -2.3%

  • AION

    82.9KRW

    0.8%

  • R

    60.3KRW

    1.1%

  • LOOM

    29.8KRW

    5.9%

  • ODE

    122.6KRW

    -0.2%

  • ARK

    243.5KRW

    -0.4%

  • FNB

    47.1KRW

    -4.6%

  • WAX

    30.8KRW

    -1.6%

  • BNT

    407.3KRW

    -2.0%

  • POWR

    57.7KRW

    2.3%

  • DENT

    0.3KRW

    2.3%

  • PIVX

    308.5KRW

    0.6%

  • CNX

    302.7KRW

    2.1%

  • MOAC

    268.7KRW

    3.1%

  • TTC

    44.6KRW

    -3.0%

  • PAY

    118.3KRW

    -5.5%

  • POLY

    32.4KRW

    2.2%

  • GUSD

    1,170.1KRW

    -0.6%

  • BORA

    10.8KRW

    -1.6%

  • REPO

    81.0KRW

    5.3%

  • HUM

    16.7KRW

    -1.6%

  • MBL

    1.9KRW

    -1.1%

  • LKY

    140.8KRW

    -9.2%

  • CPT

    2.2KRW

    -1.9%

  • AERGO

    55.2KRW

    -0.4%

  • COSM

    8.1KRW

    -2.5%

  • APIS

    0.5KRW

    -1.6%

  • UPP

    11.9KRW

    -4.6%

  • BAAS

    0.7KRW

    -2.1%

  • TEMCO

    0.9KRW

    2.9%

  • MEETONE

    1.5KRW

    -2.4%

  • MVL

    0.4KRW

    -6.5%

  • DCC

    0.9KRW

    0.1%

  • ABL

    10.1KRW

    -2.8%

  • eDEL

    2.4KRW

    -0.7%

  • CLB

    4.1KRW

    64.1%

  • AMON

    4.6KRW

    9.7%

  • PTON

    0.1KRW

    -0.3%

  • HORUS

    1.5KRW

    -3.8%

  • PXL

    21.4KRW

    3.7%

  • AKRO

    2.4KRW

    -58.9%

  • XRA

    10.3KRW

    -0.0%

  • WET

    6.1KRW

    1.2%

  • VRA

    0.4KRW

    -4.2%

  • AID

    4.3KRW

    -19.8%

  • NEWS

    2.8KRW

    -12.8%

  • KARMA

    0.1KRW

    -14.3%

  • RBTC

    9,793,698.3KRW

    -0.6%

  • RBG

    1.5KRW

    -8.8%

  • SEAL

    0.9KRW

    0.1%

  • PUB

    0.2KRW

    -0.8%

  • NPER

    3.4KRW

    0.1%

  • PUT

    2.4KRW

    2.7%

  • CCH

    0.0KRW

    0.0%

  • KNT

    0.0KRW

    -17.0%

  • IQ

    4.9KRW

    -14.6%

  • BLACK

    0.8KRW

    10.4%

  • CET

    28.2KRW

    -1.3%

  • RCD

    3.0KRW

    --%

  • MCC

    1.7KRW

    0.1%

  • INC

    1.8KRW

    -11.6%

  • BZKY

    0.1KRW

    -4.1%

  • CRE

    2.0KRW

    -2.1%

Community

The Internet was not developed. It just happened. Part 1.

NOIA | 10.09| 22

The Internet was not developed. It just happened. Part 1

The Internet, in the most literal sense, is just the mesh of wires connecting computers throughout the world. In the whole history of our species, it is the single most significant invention in terms of its ability to connect us to each other and change virtually every aspect of the human experience.

Partial map of the Internet based on the January 15, 2005 data found on opte.org.

The Internet, as we know today, was at least 40 years in the making, but how and by who was it created? This is a bit of a trick question, actually. What if I told you that the Internet, as you know it, wasn’t created, at least by a single person or an institution. It just happened.

In this educational series hosted by NOIA Network, we will explain to you how the Internet became what it is today, how it works under the hood, and what can be done to make it even better. So, how it all started?

The Origins of the Internet

It’s 1958, and the world is in the midst of the Cold War, which sparks the battle between the scientists of the Eastern and Western blocs. Soviets just launched the Sputnik 1 — the first artificial earth satellite. In response to that, the United States forms an Advanced Research Projects Agency (ARPA).

This institution, governed by the United States Department of Defense, will soon become the cradle of the very first version of the Internet — the ARPANET. The concept of connecting multiple computers to the same network wasn’t that groundbreaking at the time. Such infrastructures, called Wide Area Networks (WAN), emerged in the 1950s and became established throughout the 1960s.

WAN, as a concept, is quite straightforward. It is literally just a bunch of connected computers, and the Internet, as you know today, can be considered a WAN. However, WANs of that day were limited to little areas, such as one building, and constrained by certain technological limitations.

As early as the 1960s, one man, J. C. R. Licklider, drew inspiration from this concept and in one of his papers, proposed the idea of a global network. This man would then become one of the directors of ARPA with the task of interconnecting the United States Department of Defense’s main computers. Although he left the agency half a decade before the creation of ARPANET, it was his ideas that lead the way for his successor Robert Taylor, joined by Larry Roberts, to start developing the foundation of our Internet.

J. C. R. Licklider at ARPA

ARPANET

The very first ARPANET link was established between the University of California, Los Angeles (UCLA), and the Stanford Research Institute.

Take a moment and think about what could be the very first thing sent via this connection. I’ll give you a hint. It wasn’t a picture. Actually, it wasn’t even a sentence.

It was L.

Yes, just L. Then it was O. Then, they typed G, and the whole system crashed.

This first lousy transmission marked the beginning of arguably the greatest human invention ever. After that, ARPANET started to spread. At first, the whole network connected four nodes — three in California and one in Utah. In 1970 the East and West coasts of North America were connected with Cambridge joining the network.

Original Sketch of ARPANET

Packet Switching

Systems of that time were remarkably inefficient and had some severe limitations, and now scientists needed to make communications between these computers easier, so they did.

Just like how we have a problem of congested paths in our modern networks, scientists had the same problem then. Amplified. This is sort of like NOIA Network before it was cool, right?

Early ARPANET architecture wasn’t designed with a rapid expansion in mind, thus, scientists quickly realized that they would have an issue. At that time, transmitting data was based on something called Circuit Switching. Basically, using this method, you could only send data as a full packet and only to one computer at the time. This method works well for phone calls but not so much for the Internet.

The proposed solution for that comes from Britain and its scientist Donald Davies. He, for the first time, implemented a data transfer method called Packet Switching. Simply put, this method allows for a data packet to be cut at one end and put back together at the other. This, for the first time, allowed to clear up congestions and interconnect many computers to the network. Using this method, the first packet-switching network was created, and it was based in Britain and called NPL.

Packet-switching was quickly adopted by ARPANET and allowed for a quite rapid expansion in the context of that time. It was not long before other networks followed the ARPANET. French CYCLADES, American Merit, and allegedly the first network available to the public — Telenet were all packet-switching networks. By 1981 there were 213 computers connected to the ARPANET and many more to other networks. So, in the 1970s, we already had a pretty solid infrastructure with just the ARPANET connecting the continental United States, and even Hawaii, as well as London, were connected via a satellite link.

The ARPANET Development Timeline (1969–1977)

TPC/IP

With the emergence of networks like CYCLADES and NPL, scientists ran into another problem. Different networks had different protocols, essentially meaning that they talked in different languages.

Just like a French speaker couldn’t talk via telephone with the Korean speaker without a common language, although connected, ARPANET couldn’t communicate with CYCLADES.

This dilemma sparked another round of research and scientists of ARPANET, with the inspiration from CYCLADES, designed the theoretical model of standard Internet Protocol Suite, commonly known as TCP/IP. Later, DARPA contracted BBN Technologies, Stanford University, and the University College London to develop operational versions of the protocol. In the course of development of the protocol, the version number progressed from version 1 to version 4, and the latter became known as Internet Protocol Version 4 (IPv4), that is still used today, alongside the newer version — IPv6.

When we talk about the technology of NOIA Network, this set of Internet Protocols is an essential part of the Internet to understand. The Border Gateway Protocol (BGP), which we expect to replace with the Programmable Internet, is one of the protocols on the application layer of TCP/IP. When you open ports to run an NOIA node, you are mingling with the Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), which both are core protocols of TCP/IP.

Finally, IPv4 and IPv6 is a fundamental part of the Internet layer. IPv4, although still useful, is quite limited and is due to be replaced with IPv6 in the future. The latter, combined with the segment routing, is the basis of our Programmable Internet and will allow us to introduce the network that can be programmed on a packet level and make the Internet more efficient than ever. I will expand on this in the following articles, but hopefully, you already understand what it’s all about.

NOIA Network’s Programmable Internet

E-Mail

E-mail, in its first form, was developed for ARPANET in the early 1960s and occupied the larger part of the Internet’s traffic. Just to highlight how far we’ve come with the Internet, I want to tell you how e-mails were being sent then.

Let’s say you are the researcher at Stanford University in 1970, and you want to ask scientists at Cambridge how’s the weather on the other coast. You type your message and click send, right?

Wrong.

People had to keep an updated map of the entire network of computers on their desks, and before clicking the send button, they had to type out the complete path required to reach the other end.

With the increasing amount of computers being connected, this quickly proved to be inefficient, and scientists realized that the whole Internet has to be updated, hence TCP/IP. Ironically, if now we used the same method as scientists of that time, we could make our connection faster.

The problem is that the current Internet Protocol is not that smart. For instance, if you want to send the e-mail from Stanford to Cambridge nowadays, the data packet will be sent via the shortest route possible, ignoring the fact that the network might be congested at some point. This means that if you could choose a path for your e-mail to travel, you could pick the one which is longer but less congested, thus quicker. That is precisely what NOIA Network’s Programmable Internet does.

NSFNET and Commercialization of the Internet

In 1985, NSFNET was created, and not long after its emergence, ARPANET was decommissioned and shut down. NSFNET, similarly, connected national supercomputing centers at several universities.

However, to make the Internet mainstream and readily available for the general public, there was still one mountain to climb. The main hassle came from the fact that, as a government-sponsored activity, commercial ISPs weren’t allowed to connect to the NSFNET. The NSFNET had an Authorized Use Policy (AUP), meaning that no one else but government bodies and scientific organizations were permitted to connect to the network.

After some time (and politics lobbied), it finally became abundantly clear that the government doesn’t need to own the NSFNET, and in 1992, the United States Congress passed the Scientific and Advanced-Technology Act. With this new legislation in place, commercial networks were finally able to connect with the NSFNET, and a transition plan to a commercial Internet was created.

Enabled by the new law, Network Service Providers (NSPs) that had connections to NSFNET’s Network Access Points (NAPs) started emerging. Instead of NSFNET connection, government and science organizations were given funding to buy bandwidth from these newly established commercial providers. However, surrounded by virtually limitless commercial opportunities, a portion of NSF-funded traffic decreased, and with time NSPs pulled out of NAPs.

With that, the NSP designation started to vanish as they were beginning to be called Internet Service Providers (ISP). Then they connected with each other, and this marked the beginning of publicly available Internet with ISPs, which services we all use. Outside of the government control, they were finally able to expand freely and create the decentralized Internet, which we all know and love today.

World Wide Web

Probably the most significant invention facilitating user experience on the Internet and ensuring easy access for everyone started in a laboratory. In fact, the modern Internet started in the CERN.

It’s the same institution, which is now responsible for the thing called Large Hadron Collider. You might have heard of it. It’s the particle accelerator, used by scientists to reveal the deepest secrets of our universe. Pretty ordinary stuff, huh?

Anyway, let’s get back to our most important invention ever, which allows us to send cat memes to each other. This takes us back to the 1990s at CERN, where the scientist Tim Berners-Lee spent some time. To facilitate scientific progress, he wanted to manage scientists’ research and make it easier to share. He did it by inventing the first-ever Internet Browser — WorldWideWeb. The first website was also created by him in August 1991 and paved the way for millions of other websites to appear in later years. You can check out how the first website of the CERN looked here.

WorldWideWeb Browser and CERN Website found on https://worldwideweb.cern.ch/browser/

Although WorldWideWeb was the first, the browser that made the Internet truly mainstream was the NCSA Mosaic. It was first of its kind to bring multimedia content to users and arguably kick-started the evolution of the modern Internet in which you can happily scroll Facebook and watch videos on Youtube.

What’s next?

To really understand the subject, you need to dive into its origins. I hope that by taking this journey through the evolution of the Internet with us, you will understand more about the Internet and, with the help of further articles in this series, what part NOIA Network plays in it.

That is all for the first part, folks. I will be back next week and tell you a story about the rise of commercial ISPs and further Internet development. We will try to delve deeper into modern Internet infrastructure, how data flows throughout the world, and how NOIA Network is able to make this whole process much more efficient. See you next time and stay tuned!


The Internet was not developed. It just happened. Part 1. was originally published in NOIA on Medium, where people are continuing the conversation by highlighting and responding to this story.

Comment 0

delete

Are you sure you want to delete this post?